Gauss's Law For Magnetism
   HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, Gauss's law for magnetism is one of the four
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. ...
that underlie
classical electrodynamics Classical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model; It is, therefore, a classical fi ...
. It states that the magnetic field has
divergence In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of t ...
equal to zero, in other words, that it is a
solenoidal vector field In vector calculus a solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field v with divergence zero at all points in the field: \nabla \cdot \mathbf ...
. It is equivalent to the statement that
magnetic monopole In particle physics, a magnetic monopole is a hypothetical elementary particle that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). A magnetic monopole would have a net north or south "magneti ...
s do not exist. Rather than "magnetic charges", the basic entity for magnetism is the
magnetic dipole In electromagnetism, a magnetic dipole is the limit of either a closed loop of electric current or a pair of poles as the size of the source is reduced to zero while keeping the magnetic moment constant. It is a magnetic analogue of the electric ...
. (If monopoles were ever found, the law would have to be modified, as elaborated below.) Gauss's law for magnetism can be written in two forms, a ''differential form'' and an ''integral form''. These forms are equivalent due to the divergence theorem. The name "Gauss's law for magnetism" is not universally used. The law is also called "Absence of free magnetic poles"; one reference even explicitly says the law has "no name". It is also referred to as the "transversality requirement" because for
plane wave In physics, a plane wave is a special case of wave or field: a physical quantity whose value, at any moment, is constant through any plane that is perpendicular to a fixed direction in space. For any position \vec x in space and any time t, ...
s it requires that the polarization be transverse to the direction of propagation.


Differential form

The differential form for Gauss's law for magnetism is: where denotes
divergence In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of t ...
, and is the magnetic field.


Integral form

The integral form of Gauss's law for magnetism states: where is any
closed surface In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solids; for example, the sphere is the boundary of the solid ball. Other surfaces arise as g ...
(see image right), and is a
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
, whose magnitude is the area of an infinitesimal piece of the surface , and whose direction is the outward-pointing surface normal (see surface integral for more details). The left-hand side of this equation is called the net flux of the magnetic field out of the surface, and Gauss's law for magnetism states that it is always zero. The integral and differential forms of Gauss's law for magnetism are mathematically equivalent, due to the divergence theorem. That said, one or the other might be more convenient to use in a particular computation. The law in this form states that for each volume element in space, there are exactly the same number of "magnetic field lines" entering and exiting the volume. No total "magnetic charge" can build up in any point in space. For example, the south pole of the magnet is exactly as strong as the north pole, and free-floating south poles without accompanying north poles (magnetic monopoles) are not allowed. In contrast, this is not true for other fields such as electric fields or gravitational fields, where total
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respe ...
or
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
can build up in a volume of space.


Vector potential

Due to the Helmholtz decomposition theorem, Gauss's law for magnetism is equivalent to the following statement: The vector field is called the magnetic vector potential. Note that there is more than one possible which satisfies this equation for a given field. In fact, there are infinitely many: any field of the form can be added onto to get an alternative choice for , by the identity (see
Vector calculus identities The following are important identities involving derivatives and integrals in vector calculus. Operator notation Gradient For a function f(x, y, z) in three-dimensional Cartesian coordinate variables, the gradient is the vector field: \o ...
): \nabla\times \mathbf = \nabla\times(\mathbf + \nabla \phi) since the curl of a gradient is the
zero 0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usual ...
vector field: \nabla\times \nabla \phi=\boldsymbol This arbitrariness in is called gauge freedom.


Field lines

The magnetic field can be depicted via
field line A field line is a graphical visual aid for visualizing vector fields. It consists of an imaginary directed line which is tangent to the field vector at each point along its length. A diagram showing a representative set of neighboring field ...
s (also called ''flux lines'') – that is, a set of curves whose direction corresponds to the direction of , and whose areal density is proportional to the magnitude of . Gauss's law for magnetism is equivalent to the statement that the field lines have neither a beginning nor an end: Each one either forms a closed loop, winds around forever without ever quite joining back up to itself exactly, or extends to infinity.


Modification if magnetic monopoles exist

If
magnetic monopoles In particle physics, a magnetic monopole is a hypothetical elementary particle that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). A magnetic monopole would have a net north or south "magneti ...
were discovered, then Gauss's law for magnetism would state the divergence of would be proportional to the ''
magnetic charge In particle physics, a magnetic monopole is a hypothetical elementary particle that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). A magnetic monopole would have a net north or south "magneti ...
density'' , analogous to Gauss's law for electric field. For zero net magnetic charge density (), the original form of Gauss's magnetism law is the result. The modified formula for use with the SI is not standard and depends on the choice of defining equation for the magnetic charge and current; in one variation, magnetic charge has units of webers, in another it has units of ampere-
meter The metre (British spelling) or meter (American spelling; see spelling differences) (from the French unit , from the Greek noun , "measure"), symbol m, is the primary unit of length in the International System of Units (SI), though its pref ...
s. where is the
vacuum permeability The vacuum magnetic permeability (variously ''vacuum permeability'', ''permeability of free space'', ''permeability of vacuum''), also known as the magnetic constant, is the magnetic permeability in a classical vacuum. It is a physical constant, ...
. So far, examples of magnetic monopoles are disputed in extensive search, although certain papers report examples matching that behavior.


History

This idea of the nonexistence of the magnetic monopoles originated in 1269 by
Petrus Peregrinus de Maricourt Petrus Peregrinus de Maricourt (Latin), Pierre Pelerin de Maricourt (French), or Peter Peregrinus of Maricourt (fl. 1269), was a French mathematician, physicist, and writer who conducted experiments on magnetism and wrote the first extant treatise ...
. His work heavily influenced William Gilbert, whose 1600 work
De Magnete ''De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure'' (''On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth'') is a scientific work published in 1600 by the English physician and scientist William Gilbert. A h ...
spread the idea further. In the early 1800s
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic inducti ...
reintroduced this law, and it subsequently made its way into
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and li ...
's electromagnetic field equations.


Numerical computation

In
numerical computation Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods th ...
, the numerical solution may not satisfy Gauss's law for magnetism due to the discretization errors of the numerical methods. However, in many cases, e.g., for
magnetohydrodynamics Magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydro­magnetics) is the study of the magnetic properties and behaviour of electrically conducting fluids. Examples of such magneto­fluids include plasmas, liquid metals, ...
, it is important to preserve Gauss's law for magnetism precisely (up to the machine precision). Violation of Gauss's law for magnetism on the discrete level will introduce a strong non-physical force. In view of energy conservation, violation of this condition leads to a non-conservative energy integral, and the error is proportional to the divergence of the magnetic field. There are various ways to preserve Gauss's law for magnetism in numerical methods, including the divergence-cleaning techniques, the constrained transport method, potential-based formulations and de Rham complex based finite element methods where stable and structure-preserving algorithms are constructed on unstructured meshes with finite element differential forms.


See also

*
Magnetic moment In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electromagne ...
*
Vector calculus Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space \mathbb^3. The term "vector calculus" is sometimes used as a synonym for the broader subjec ...
*
Integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along wit ...
* Flux *
Gaussian surface A Gaussian surface is a closed surface in three-dimensional space through which the flux of a vector field is calculated; usually the gravitational field, electric field, or magnetic field. It is an arbitrary closed surface (the boundary of ...
* Faraday's law of induction * Ampère's circuital law *
Lorenz gauge condition In electromagnetism, the Lorenz gauge condition or Lorenz gauge, for Ludvig Lorenz, is a partial gauge fixing of the electromagnetic vector potential by requiring \partial_\mu A^\mu = 0. The name is frequently confused with Hendrik Lorentz, who ...


References


External links

* {{DEFAULTSORT:Gauss's Law For Magnetism Magnetism Magnetic monopoles Maxwell's equations Magnetism